Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
نویسندگان
چکیده
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
منابع مشابه
Bounding the convergence time of the Gibbs sampler in Bayesian image restoration
This paper shows how coupling methodology can be used to give precise, a priori bounds on the convergence time of Markov chain Monte Carlo algorithms for which a partial order exists on the state space which is preserved by the Markov chain transitions. This methodology is applied to give a bound on the convergence time of the random scan Gibbs sampler used in the Bayesian restoration of an ima...
متن کاملOn Lifting the Gibbs Sampling Algorithm
First-order probabilistic models combine the power of first-order logic, the de facto tool for handling relational structure, with probabilistic graphical models, the de facto tool for handling uncertainty. Lifted probabilistic inference algorithms for them have been the subject of much recent research. The main idea in these algorithms is to improve the accuracy and scalability of existing gra...
متن کاملHow Do Medical Students Learn Professionalism During Clinical Education? A Qualitative Study of Faculty Members' and Interns' Experiences
Introduction: Influence the professional personality development and related behaviors is one of the most challenging and complicated issues in medical education. Medical students acquire their professional attitudes gradually during their education in clinical wards which profoundly affects their future manner. This study was performed in order to answer this core question: "Which experiences ...
متن کاملPolya-gamma augmentations for factor models
Bayesian inference for latent factor models, such as principal component and canonical correlation analysis, is easy for Gaussian likelihoods with conjugate priors using both Gibbs sampling and mean-field variational approximation. For other likelihood potentials one needs to either resort to more complex sampling schemes or to specifying dedicated forms for variational lower bounds. Recently, ...
متن کاملA simulation approach to convergence rates for Markov chain Monte Carlo algorithms
Markov chain Monte Carlo (MCMC) methods, including the Gibbs sampler and the Metropolis-Hastings algorithm, are very commonly used in Bayesian statistics for sampling from complicated, high-dimensional posterior distributions. A continuing source of uncertainty is how long such a sampler must be run in order to converge approximately to its target stationary distribution. Rosenthal (1995b) pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in neural information processing systems
دوره 29 شماره
صفحات -
تاریخ انتشار 2016